125 kbps with AMIS-4168x

http://onsemi.com

Introduction Question

"Is it possible to drive 125kB with the AMIS-41682?" Please consider all possible CAN bit timings (TSEG1, TSEG2, SJW), a capacitive load at each can pin about 300 pF and I = 20m line (5 ns/m) length. Please investigate different communication scenarios (e.g. arbitration).

Conclusion

The maximum propagation delay measured at 125 kB is $1.555~\mu s$. This is for 270 pF capacitive load and a bus length of 20m. When using the AMIS-41682, the user has to

APPLICATION NOTE

program the CAN-controller in such a way that the propagation segment of a bit time accounts for two maximum propagation delays to ensure correct function of the bus during arbitration and acknowledgment. In our example, the propagation segment shall be at least 3.11 μ s long.

If for instance the bit time is divided in 16 time quanta (t_q), t_q will be 0.5 μ s and the Prop_Seg has to be set to 7 t_q = 3.5 μ s. By applying this CAN-controller setting, it's ensured that the bus signal will be sampled correctly in all situations.

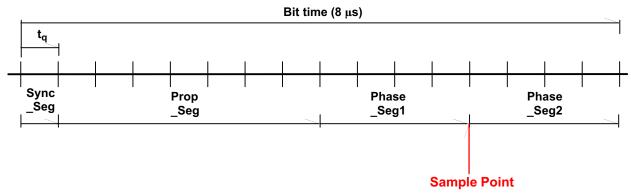


Figure 1. Example of CAN-Controller Setting Suitable for 125kB Operation with AMIS-4168x

Overall, it is not a problem to drive 125 kB with the AMIS-41682.

Performed Measurements

Propagation delay between Tx_1 and Rx_1 (transceiver 1) and Tx_1 and Rx_2 (receive transceiver 2) for different cable length, and CANL/CANH termination of 220 Ω . Used equipment:

 Oscillator type: Hewlett–Packard 3310A Function Generator; frequency 62.5 kHz (t_{bit} = 8 μs)

- Oscilloscope type: Agillent Infiniium 600 MHz, 4 GSa/s
- Power supply: Thurlby Thandar Instruments PL310QMD
- Cable: Alcatel TIA/EIA 568–B.2 Category 5e; 100 Ω; propagation delay: 570 ns/100m at 1 MHz

The circuit shown in was Figure 2 used for the measurement.

AND8365/D

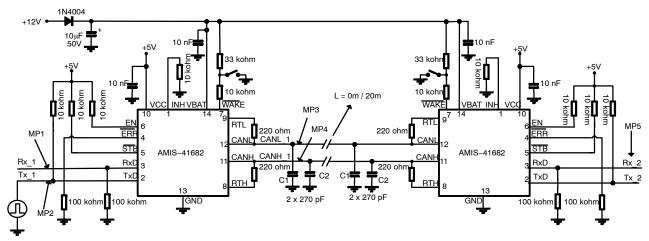


Figure 2. Measurement Set-Up

Measurements Results

Propagation delay (see data sheet) $L \rightarrow H$ and $H \rightarrow L$ for different bus configurations.

$$T_{bit} = 8 \mu s$$

$$T_{amb} = 25^{\circ}C$$

Table 1. MEASURED PROPAGATION DELAYS

Symbol	Parameter	Condition	Value	Comment
t _{PD(H)}	Propagation delay Tx_1 to Rx_1 high	C ₁ = C ₂ = 270 pF L = 0m	1.041 μs	See Figure 3
t _{PD(L)}	Propagation delay Tx_1 to Rx_1 low	C ₁ = C ₂ = 270 pF L = 0m	1.107 μs	See Figure 4
t _{PD(H)}	Propagation delay Tx_1 to Rx_2 high	C ₁ = C ₂ = 270 pF L = 0m	1.051 μs	See Figure 5
t _{PD(L)}	Propagation delay Tx_1 to Rx_2 low	C ₁ = C ₂ = 270 pF L = 0m	1.110 μs	See Figure 6
t _{PD(H)}	Propagation delay Tx_1 to Rx_1 high	C ₁ = C ₂ = 270 pF L = 20m	1.536 μs	See Figure 7
t _{PD(L)}	Propagation delay Tx_1 to Rx_1 low	C ₁ = C ₂ = 270 pF L = 20m	1.176 μs	See Figure 8
t _{PD(H)}	Propagation delay Tx_1 to Rx_2 high	C ₁ = C ₂ = 270 pF L = 20m	1.555 μs	See Figure 9
t _{PD(L)}	Propagation delay Tx_1 to Rx_2 low	C ₁ = C ₂ = 270 pF L = 20m	1.244 μs	See Figure 10

Measurements Cable Length 0m

Saved: 15 JUL 2005 14:49:43

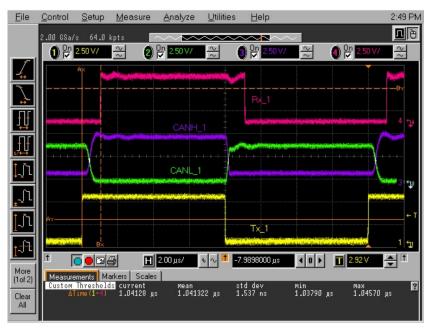


Figure 3. Propagation Delay t_{PD(H)} Between Tx_1 and Rx_1 at 125kB and Cable Length 0m = 1.041 μs

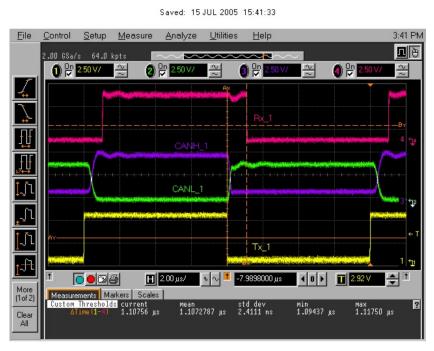


Figure 4. Propagation Delay $t_{PD(L)}$ Between Tx_1 and Rx_1 at 125kB and Cable Length 0m = 1.107 μs

AND8365/D

Saved: 15 JUL 2005 15:43:18

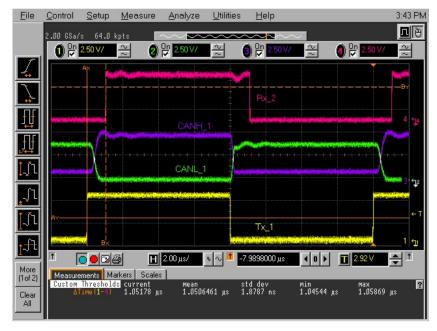


Figure 5. Propagation Delay $t_{PD(H)}$ Between Tx_1 and Rx_2 at 125kB and Cable Length 0m = 1.051 μs

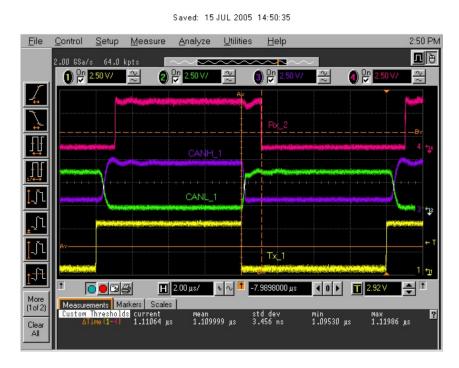


Figure 6. Propagation Delay $t_{PD(L)}$ Between Tx_1 and Rx_2 at 125kB and Cable Length 0m = 1.110 μs

Measurements Cable Length 20m

Saved: 15 JUL 2005 15:03:41

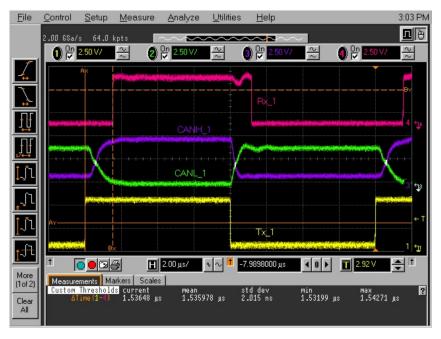


Figure 7. Propagation Delay $t_{PD(H)}$ Between Tx_1 and Rx_1 at 125kB and Cable Length 20m = 1.536 μs

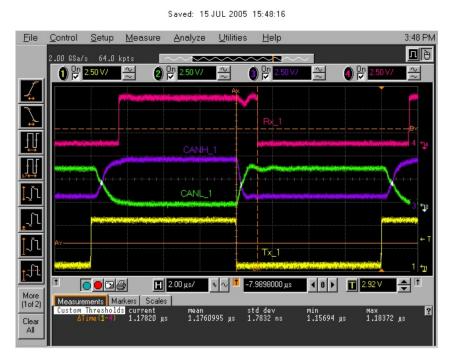


Figure 8. Propagation Delay $t_{PD(L)}$ Between Tx_1 and Rx_1 at 125kB and Cable Length 20m = 1.176 μs

Saved: 15 JUL 2005 15:47:10

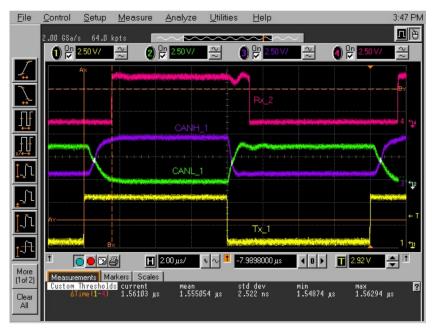


Figure 9. Propagation Delay $t_{PD(H)}$ Between Tx_1 and Rx_2 at 125kB and Cable Length 20m = 1.555 μs

Saved: 15 JUL 2005 15:04:34

<u>File Control Setup Measure</u> <u>Analyze</u> <u>Utilities</u> 3:04 PM **□** ⊕ .00 GSa/s 64.0 kpts **1** 0n | **1** √ 1) On 2.50 V/ CANL_1 ŢĻ ŢŢ Tx_1 Н 2.00 дз/ 9 V -7.9898000 дз **4** 0 ▶ **1** 2.92 ∨ More (1 of 2) Measurements Markers Scales Custom Thresholds current
ΔTime(1-4) 1.23660 μs min 1.23261 дз mean 1.244107 дз мах 1.25702 дs Clear All

Figure 10. Propagation Delay $t_{PD(L)}$ Between Tx_1 and Rx_2 at 125kB and Cable Length 20m = 1.244 μs

Company or Product Inquires

For more information about ON Semiconductor's CAN/LIN transceivers, send an email to http://www.onsemi.com/sales.

For more information about ON Semiconductor's products or services visit our Web site at http://www.onsemi.com.

AND8365/D

ON Semiconductor and un are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative